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In a recent paper (Werner, S. A. Acta Cryst. (1971). A27, 665) it was pointed out that the choice of 
scans in a neutron diffraction experiment should be based on the criterion that the diffracted beam 
enters the detector on its centerline for each angular setting of the crystal. The same criterion should 
be applied in X-ray diffraction. Since the spectral distribution of a source of X-rays and neutrons is 
quite different, conclusions regarding the optimum coupling between the detector and crystal motions 
are different in these two cases. In this paper, formulas are derived (within the framework of certain 
gaussian approximations) for the optimum scanning ratio g in equatorial plane X-ray diffraction exper- 
iments on single crystals. For the case when a monochromator is not used, g is independent of scattering 
angle 20B for a large range of instrumental parameters and Bragg angles 0B. It is found that a 0-20 scan 
is essentially never advisable. An expression for g is derived for the case when a planar monochromator 
is used in symmetric Bragg reflection. The optimum scan is found to depend on the scattering angle, but 
not in such a marked way as in the neutron case. Coupling the detector and crystal motions in the man- 
ner suggested allows one to decrease the acceptance aperture to its minimum width, thus keeping the 
background due to thermal diffuse scattering (TDS) and incoherent scattering as low as possible. 

I. Introduction 

The problem of the selection of scans in single crystal 
neutron diffraction experiments was discussed in a 
recent paper (Werner, 1971). The choice of scans in 
X-ray diffraction requires special attention because 
the geometry and spectral distribution of a source of 
X-rays and neutrons are quite different. Equatorial 
plane X-ray diffraction (like neutron diffraction) 
experiments on single crystals are generally carried out 
using either an m-scan (crystal rotating, detector fixed) 
or a 0-20 scan (detector coupled 2:1 to the crystal). 
In view of the widespread use of instrumentation 
involving tape-controlled and computer-controlled 
diffractometers, restricting the scanning of  Bragg 
reflections to these two modes is not a necessary con- 

straint. The purpose of this paper is to examine the 
question of whether there is in general a better way 
to scan Bragg reflections in X-ray diffraction. 

Over the years a number of papers have been pub- 
lished on the theory of measuring integrated intensities 
and on the various geometrical considerations neces- 
sary in X-ray diffraction experiments on single crystals 
[see for example Alexander & Smith (1962), Burbank 
(1964), Ladell & Spielberg (1966)]. A summary of the 
results of these papers regarding the necessary size 
of the receiving aperture and the range of scan is given 
in the book by Arndt  & Willis (1966). However, the 
analysis given in these papers does not permit the 
experimentalist to readily make a decision on the 
optimum coupling ratio between the detector and 
crystal motions. The intent of this paper is to derive an 
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expression for the optimum scanning ratio which can 
be easily used in practical experimental situations. 

H. Filtered beam, point sample 

In the neutron diffraction case, we used the obvious 
criterion in deriving the optimum scanning ratio g that 
the diffracted beam should enter the detector on its 
centerline for all angular settings q~ of the crystal. That 
is, as the crystal is rotated by an angle A~o, the detector 
should be moved by an angle gAq~. A similar criterion 
should be applied in X-ray diffraction. There are 
several complications which make the X-ray problem 
more difficult; the most important of which is that the 
spectral distribution of incident X-rays is sharply 
peaked at the characteristic energies. We will treat 
the case here of filtered K-radiation (using a fl filter or 
a set of balanced filters) and assume that the incident 
beam consists only of the K ~  and Kc~2 lines. That is, 
we assume the incident beam is described by two 'bell- 
shaped' distributions displaced from each other by a 
wave number 6k. There is no angle-energy correlation 
in the incident beam. Thus, the beam incident on the 
sample is quite different in the X-ray and neutron 
cases. This difference naturally leads to quite different 
conclusions regarding the choice of scan. 

A schematic diagram of a typical X-ray diffraction 
experiment is shown in Fig. 1. We first assume that the 
sample size is small in comparison to the X-ray focus. 
The angular distribution of X-rays incident on the 
sample is then due to the finite size of the X-ray focus. 
As the crystal is rotated through a Bragg reflection the 
angt.hr distribution of reflected wave vectors will shift 
in a particular way dependent upon the nominal scat- 
tering angle 208, the sample mosaic spread r&, the 
spectral distribution of the source, and the angular 
divergence of the incident beam. In order to obtain 
the integrated intensity, it is necessary for the detector 
to accept all of these Bragg scattered X-rays for each 
angular setting ~ of the crystal with essentially equal 
efficiency. In order to reduce the background due to 
incoherent scattering and the correction necessary for 
thermal diffuse scattering, a slit is generally placed in 
front of the detector. This slit should be no wider than 
is necessary to accept all of the Bragg-scattered X-rays. 
For this to be the case, the detector must be moved as 
a function of the crystal angle ~o. The necessary dimen- 
sions of the detector aperture have been discussed by 
several authors for the case of o9 and 0-20 scans [see 
for example Furnas (1957) or Burbank (1964)]. 

The intensity of the beam diffracted at an angle 
20~ + 7, (where 20B is the nominal scattering angle) for 
a given setting ~0 of the crystal will involve an integra- 
tion over wave number since the detector cannot distin- 
guish between wave numbers k close to the nominal 
value ko. That is 

1(7,~)= IJo ( ~ - ,  7o)R(As)d(kok ) . (1) 

J0 is the distribution in wave number Ak/ko and angle 
70 of the incident X-rays. R(As) is the reflectivity of the 
sample as a function of mosaic orientation angle As. 
Since the incident spectrum consists of two parts, Kal 
and Ka2, the diffracted beam consists of two parts, 
namely 

The central wavenumber k0 is generally taken to be 
½k2 + ~-kl, where kl and k2 are the wavenumbers cor- 
responding to the centers of the K~I and K~2 spectral 
lines [see Fig. 2(a)]. We have defined Ak to be the dif- 
ference between any other wave number k and this 
arbitrary selection of the nominal k0. The angular 
distribution of the incident beam is generally trapez- 
oidal in shape with rounded edges as shown in Fig. 2(b). 
We will assume that the reflectivity of the crystal is 
gaussian, that is 

R(A,)=ps exp (-A~/2r/~). (3) 

The integrations indicated in equation (2) cannot be 
done analytically. Thus, in principle, a numerical 
integration is necessary for each Bragg reflection and 
for each set of instrumental parameters. This, of course, 
would be too cumbersome to be useful experimentally. 
However, if we approximate each of the spectral com- 
ponents, and the angular distribution of incident 
X-rays by gaussian functions, the integrations are 
straightforward. Since we are only interested in ob- 
taining an expression for the optimum scanning ratio 
g and not the detailed nature of 1(7, ~), these approxi- 
mations will be found to be adequate. Thus, we sup- 
pose the incident beam is described by 

Jo -ko-' 7o = {J~ exp [ - ( k -k l )2 /2k~ l  

r 7o ~ 1 
+ J2 exp [-(k-ka)2/2kZ~]} exp | -  -4..2/. (4) 

L 

DETECTOR /o 

~2~8 

CRYSTAL 

Fig. 1. A schematic diagram of a typical X-ray diffraction ex- 
perinaent. The distance between the X-ray focus and the 
crystal is Rl, and the distance between the detector and the 
crystal is R2. The 'apparent' angle at which a given diffracted 
ray enters the detector is fl=s/R2, where the arc length s is 
measured from the nominal diffracted ray point O. 
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(a) 
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yo----~ 

(b) 
Fig.2. (a). Assumed wave number distribution of the incident 

beam. (b) Diagram showing the assumed gaussian approx- 
imation to a trapezoidal angular distribution of the incident 
beam impinging upon a point sample. 

The parameters ~ ,  ffz and ~o are chosen such that the 
area and height of the gaussian functions are the same 
as for the Cauchy and trapezoidal functions, namely, 

2a+b 
" ( S b )  

w~ is the half-width at half-maximum of the spectral 
line K0q or K0q. a and b are horizontal dimensions 
associated with the X-ray focus. R~ is the distance 
between the source and the sample (see Figs. 1 and 2). 

In order to perform the integrations indicated in 
equation (2) we must express 7o and A, in terms of y, 
~0 and Ak/ko. This is easily done; the results are 

and 

Ak 
~'o = Y -  2 - ~ 0  e tan On (6a) 

Ak 
A,=y-~o-  ~ g tan On. (6b) 

All angles are defined to be positive for rotations in 
the counter-clockwise sense, and e gives the sense of 
scattering (not important in this problem). Inserting 
these relations into equation (2), we find that the 

intensity for a given diffracted-ray direction ~ and crys- 
tal setting ~o(= 0 - 0 n )  is 

I(y,~o)=I1 exp {-[~,-F,(e)-2ede/2a~-(q~-e,)2/2~} 
+12 exp {-[y-V2(~o)-2~ozlZ/26~-(¢-~oz)z/2a~}. (7) 

The width of the rocking curve associated with each 
spectral component (Ke,, Kez) is given by o'~. The width 
of each component of the outgoing diffracted beam fi~ 
is independent of the crystal setting. Expressions for a~ 
and fi~ are given in Appendix A. 

The centroid of the diffracted rays for each spectral 
component is shifted by an angle 2~o~ (relative to the 
nominal scattering angle 20n) due to the selection of 
k0 to lie between the Kel and Ko~z lines. This angle in- 
creases with increasing scattering angle according to 

kl-- ko ~ . 
~0l=-- tan0B( ko ] (8) 

There is an additional shift 1-'l of the diffracted rays 
which is a linear function of the crystal setting, namely 

F,(~)=g,(~-qh) , (9) 

where the dependence ofg~ on the instrumental param- 
eters is found to be 

c~02 + 2 tan 2 0B ~  
g' = r/~ z + tan 2 0 n ~  + ~ "  (10) 

This is a rather simple formula; however, the implica- 
tions of it are rather surprising. The physical impor- 
tance is the following: if the diffractometer is aligned 
on a given Bragg reflection such that the nominal 
incident wave vector k0 is reflected into the center of 
the detector when the crystal is set at ~ = 0, the centroids 
of the diffracted rays associated with the K=I and 
K=: lines will be displaced to the left and to the right 

I.o A 

g 

C 

D 

I I I I I I ~ I [ 
0 I0 20  30 40  50 60  70  80  90 I00 

Fig. 3. Curves showing the variation of the optimum scanning 
ratio g as a function of Bragg angle. The spectral width par- 
ameters were taken as ~x = 2.57 x 10 -4 ,  42 = 2.82 x 10 -4 [appro- 
priate to Mo radiation according to equation (5a)]. The colli- 
mation parameter was chosen to be 0~0 = 0.15 °. Curve (A) is 
drawn fora mosaic spread r/8 =0.01 °, (B) for r/8 = 0.1 °, (C) for 
r/s=0"3 ° and (D) for r/8=0.5 °. 

A C 28A 4 
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respectively of the center of the detector aperture. As 
the crystal is rotated by an angle ~0, the diffracted K~I 
component will shift by an angle g~fp and the K~z 
component will shift by g2~0. Thus, in order to maintain 
the original alignment of the diffracted rays with 
respect to the center of  the detector aperture, the 
detector should be rotated by the angle g~(0 for Kcq 
and g2¢ for Kct2. This, of course, cannot be done. 
However, g~ and gz differ only because the widths of 
the Kcq and Ka2 lines are slightly different. This dif- 
ference is only 10% for Mo radiation [see Compton 
& Allison (1935) p. 745]. In addition the spectral 
widths ~l are quite often very small in comparison with 
the collimation ct0 and the sample mosaic spread r/s. 
In this case 

~°2 (II) 
gt=g2- -  r/s 2-t-a~ " 

Plots of gi using widths appropriate to Mo radiation 
and for c~0=0.15 ° for various mosaic spreads ~/s are 
shown in Fig. 3. It is seen that the difference between 
gl and g2 only shows up at very large scattering angle. 
Thus, to a very good approximation, a scanning ratio 

which is the average of gl and g~ is optimum. That  is, 
the coupling between the detector and crystal motions 
should be 

gl + g2 (12) 
g =  2 " 

This choice of scan will keep the diffracted beam 
aligned with the detector. I t  will be noted that a 0 -20  
scan is essentially never advisable. In fact, in the 
simplest case to consider, namely that of a perfect 
crystal (r/s = 0) and a monoenergetic source (~l = 0), the 
coupling between the detector and the crystal should 
be 1:1 not 2:1! 

In order to emphasize the seriousness of not  per- 
forming the optimum scan, we have plotted in Fig. 4(a) 
the angular distribution of the diffracted beam as given 
by equation (7) for a given set of parameters (r/s = 0.1 o, 
~o = O. 15 °, On = 20 o) using Mo radiation. We have as- 
sumed that the relative intensity of Kel and Ka,+ is 2:1. 
For  an co scan, the center of the detector remains at 
7 = 0. Thus, as the crystal is rotated from negative to 
positive @, the diffracted beam moves across .~he 
detector apertures from left to right. The same distil- 
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Fig. 4. This figure shows the diffracted beam distribution [as given by equation (7)] plotted with an abscissa appropriate to 
(a) an 09 scan, (b) a 0-20 scan, (c) an optimum scan. The collimation parameter ct0=0.15 °, the mosaic spread r/8=0"l °, the 
Bragg angle 0z~=20 °. The separation between the Kal and Kct2 lines was taken as (kl-k2)/ko=5"9 x 10-3, appropriate to Me 

• radiation, and the relative intensity of the two lines was assumed to be 2:1. It is noted that the detector aperture (as shown 
schematically here) can be considerably narrower if the optimum scan is performed than for an o-scan or a 0-20 scan. The 
slit widths shown are not precise (a matter of judgement) and are only shown to illustrate the possibility of using a narrower 
receiving aperture. 
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Fig. 5. Dependence of the optimum scanning ratio g on the 
ratio of the mosaic spread r/s to the net collimation param- 
eter ~0. These curves are drawn for various ct2/ct0, where this 
ratio gives the fraction of the collimation which is due to the 
crystal size. The relative distance between the detector and 
the crystal (R2) and the distance between the source and the 
crystal (Rx) is r= 1.0. 

butions are plotted in Fig. 4(b) with 7 -  2(0 as the abscis- 
sa, which is appropriate for a 0-20 scan. The center of 
the detector is at y - 2 ~ = 0 .  Thus, we see that in this 
case the diffracted beam moves from right to left across 
the detector as the crystal is rotated from negative to 
positive (0. That is, the detector is moving too rapidly 
in order to keep the diffracted beam aligned with its 
centerline. In Fig. 4(c), the same distribution is plotted 
with ? - g ¢  as the abscissa. In this case the optimum 
scanning ratio g is 0.694, and we note that this coupling 
ratio maintains the alignment of the detector with the 
diffracted beam. An important benefit of coupling the 
detector and the crystal together in the way suggested 
here is that the size of the detector aperture may be 
reduced to its minimum size, thus reducing the back- 
ground due to TDS and incoherent scattering. 

HI. Effect of crystal size 

In § II we assumed that the crystal size was small in 
comparison to the size of the X-ray focus. The fact 
that in some cases the crystal may be of comparable 
size is important. Not only is the cross-fire, say c~0, of 
the incident beam increased, but the center of gravity 
of the diffracted beam within the crystal shifts as the 
crystal is rotated. That is, the 'X-ray center' of the 
crystal does not coincide with its geometric center and 
is dependent upon crystal angle (0. Thus the detector 
should be moved as a function of ~ in order to remain 
aligned with the diffracted beam. In fact, the detector 
should really be translated as a function of ~. However 
since the crystal size is generally small in comparison 
with the distance R2 between the detector and the crystal, 
this necessary translation can be taken care of by an 

additional rotation of the detector. A precise calcula- 
tion of this effect will of course depend on the size and 
shape of the crystal. Since we are only interes.ed in 
obtaining an expression for the optimum scanning 
ratio we will make certain approximations so that the 
problem is analytically tractable. 

In this case we are interested in calculating the net 
diffracted X-ray intensity entering the detector aperture 
at a distance s away from the nominal ray on an arc of 
radius R2 (see Fig. 1) for each setting of the crystal ~. 
That is, we are interested in the intensity l(s,~o) or 
equivalently l(fl, ~) where fl=s/R2. This involves inte- 
grating the diffracted intensity over wave number and 
over all of the possible ray directions y leading from 
the crystal to the point s on the detector aperture. 

We write the incident intensity Jo as a function of 
wave number Ak/ko and the position yl (measured 
perpendicular to the incident beam direction) on the 
X-ray focus. The reflectivity R of the crystal is now a 
function of both the mosaic orientation angle As and 
the position in the crystal from which the diffracted 
beam originates. We make the following approxima- 
tions: 
Approximation (1). The trapezoidal shape of the Yl de- 
pendence of the incident beam is replaced by a gaussian 
(as in § II), namely 

Jo(Yl) ~exp (-y2/2o92). (13) 

Approximation (2). The crystal shape is approxi- 
mated by a thin disk with the plane of the disk con- 
taining the scattering vector (see Fig. 1), and the 
reflectivity drops off from the center of the crystal as a 
gaussian 

R.-~exp (-y22/2o92). (14) 

Thus, the diffracted intensity as a function of the 
'apparent' outgoing angle fl and crystal setting (0 is 

I(fl, q~)= l Jo (-~o , Yl)R(A,,y2)d~'d (-~o ) • (15) 

At first sight approximation (2) might appear to be ex- 
cessively severe. However, it is clear that we have retained 
the essential physical ingredients of the problem, and the 
accuracy to which our result for the optimum scanning 
ratio g approximates the result of a detailed numerical 
integration for a given crystal shape will depend on 
how we choose the equivalent gaussian parameter o92. 
We suggest that this should be done in the same way 
as in § II; namely, the gaussian function approximating 
the Y2 dependence of the reflectivity should have the 
same area and height as the more exact expression. 

For example, for a 'transparent' sphere of radius Q 
the reflectivity falls off quadratically with Y2 as 

R(y2) = 1 - (y2/Q) 2 , (16) 
so that we would take 

1 _ _ 4  o92-:-~)- Q. (17) 

A C 28A - 4* 
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In §II we found that the selection of the position of the 
nominal wavevector k0 to lie between Kcq and Kcq 
simply displaces the mean diffracted-ray direction by 
2(pt and the maximum of crystal rocking curve by 
qgi. Consequently, we will let k0 coincide with the center 
of the K ~  line (or the K~2 line) in order to simplify the 
algebra and suppose that the incident beam consists of 
only one line of the doublet. The result [equation (20)] 
can then be modified to include both lines by making the 
substitutions fl -+ f l -  2~0~ and ~ --* ~0 - ~0~. 

In order to perform the integration indicated in 
equation (15) we must express Yt, Y2, and As in terms 
of fl, ~0, 7, and Ak/ko. This is easily done from the 
geometry of Fig. 1 and the results are 

Ak 
y,=-(R~+R2)y+2e tan OBR1 ~ + R2P , (18) 

and 
y2= R2fl- R27 . (19) 

. . . . . . .  . . . . . . . . . . .  - - - 7 - - . _ ~ i  . . . . . . .  
L ~ . ~ . ,  . ~  . , . 

A S is given by equation (6b). With these substitutions 
the intensity as a function of the 'apparent'  diffracted- 
ray direction ]Y and crystal setting ~p is found to be 
of the form 

I(.fl,(o)=Io exp {-[fl-F(~o)12/262-C/2az}.  (20) 

The center of the diffracted beam again shifts linearly 
with the crystal setting according to 

/-'(tp) = g~ .  (21) 

The general expressions for a, & and g are given in 
Appendix B. When the width of the spectral line is 
narrow in comparison with the collimation and mosaic 
spread, the optimum scanning ratio is 

(r + r2)~z z + al z (22) 
g =  r 2 ~ q _  2 2-" cq + r/s 

where r is the ratio of the distance between the detector 
and the sample (R2) to the distance from the source 
to the sample (R1). The collimation parameters (at, ~2) 
associated with the size of the source and the sample 
are al = ~l/R1 and a2 = c-o2/R1 respectively. If  one were 
only to take into account the angular variables and 
were to ignore the effect of the shift of the 'X-ray' 
center of the crystal with ¢p this expression would 
reduce to equation (11), where the net collimation 
parameter is 

2 2 ao = ~ +  ct2 • (23)  

In Fig. 5 we have plotted the optimum scanning ratio 
g given by equation (22) as a function of the ratio of 
the mosaic spread r/s to the net collimation parameter 
e0 (for the case r =  1.0). The ratio e2/c~0 gives the frac- 
tion of the net collimation which is due to the finite 
size of the crystal. It is noted that the only case when a 

0-20 scan is optimum is for a perfect crystal (r/s=0) 
and a point source (cq/~0 = 1.0). The translational effect 
of the X-ray center of the crystal on g is important 
when the size of the crystal is comparable to the 
projected size of the focus. It generally requires that 
the detector should be moved more rapidly with 
respect to the crystal than would be the case if this 
translational effect were absent. 

For a wide range of scattering angles and experimen- 
tal parameters, the expression for the optimum scan- 
ning ratio g given in equation (22) will be adequate. 
Although the general expression for g given in Appen- 
dix B is rather complicated, for a given experiment 
with a definite set of parameters, it is simply a single 
curve as a function of Bragg angle similar to those 
drawn in Fig. 3. 

An obvious effect which is not given by the analysis 
outlined here is illustrated in Fig. 6. Suppose the 
source is monoenergetic and small in comparison to 
the sample. Then, as the sample is rotated from 
negative angles to positive angles, the diffracting region 
of the crystal shifts from one edge of the crystal [Fig. 
6(a)] through the middle [Fig. 6(b)] to the other edge 
[Fig. 6(c)]. Thus, the diffracted beam is first spatially 
narrow, goes through a maximum in width at ~p=0 
and then narrows again as the crystal is rotated. Since 
we have approximated the crystal shape by a thin disk 
(Approximation 2), this effect due to the finite thick- 
ness of the crystal is not included, and the result 
obtained for the width of the diffracted beam 6 is 
independent of rp. As we have pointed out, this approxi- 
mation is not serious in the calculation of the optimum 
scanning ratio. However, in calculating the width of 
the receiving aperture, it should be taken into account 
if the sample is large. It is apparent that a derivation of 
the change in the width of the diffracted beam as a 
function of (o due to this effect could be made. Since 

Source Sample 

Ca) - 

(b) . . A ~  

(c) • 
A B 

Fig. 6. D iag ram illustrating the effect of  the finite thickness of  
the sample on the width of  the diffracted beam. For  a perfect  
crystal (r /s=0) and a point  source which is monoenerget ic ,  
the diffracted beam originates on one side of  the crystal 
on the plane between A and  B for  negative crystal settings 
(0 and is spatially na r row (a). As the crystal is ro ta ted  th rough  
the peak of the Bragg reflection the beam broadens  (b) and 
then nar rows again (c). 



S. A. W E R N E R  149 

DETECTOR 

MONOCHROMATOR_ R1 1 

Fig. 7. Schematic diagram of an X-ray diffraction experiment 
in which a planar monochromator is used in symmetric 
Bragg reflection. 

it is not likely that one will want to change the detector 
slit width progressively during a scan, a calculation 
of this kind would not be very useful. Simply adding 
a width due to this effect will give an acceptable 
prescription for calculating the necessary detector 
aperture for an optimum scan. The maximum projected 
width X [see Fig. 6(/))] should be used. 

IV. Monochromated source 

There are numerous geometries which should be con- 
sidered in deriving an expression for the optimum 
scanning ratio g when a monochromating crystal is 
used. We treat only the simplest case here; that is, 
a planar monochromator used in symmetric Bragg 
reflection and a point sample as shown in Fig. 7. 
Generalizing this calculation to bent crystal mono- 
chromators, asymmetrically cut monochromators, and 
samples of finite size is not a difficult task. 

We are again interested in obtaining an expression 
for the diffracted intensity as a function of the crystal 

R m and Rs are the reflectivities of the monochromator  
and sample. Am and As are the mosaic orientation 
angles. In order to perform the integration in equation 
(24) it is necessary to express Yo, Am and As in terms of 
y, ~0 and Ak/ko. This can easily be done from the geom- 
etry of Fig. 7. The results are 

and 

Where 

and 

dk  [2R0(M+2S)--2R,SI  (26a) Yo = ~[R1 - Ro] + -~o 

A m = y - ( M + 2 S )  Ak (26b) 
ko 

Ak ' (26c) 

M=er,, tan 0,,,, (27a) 

S=es tan 0s. (27b) 

e,, and es give the sense of scattering at the monochro- 
mator and the sample respectively, and are + 1 depend- 
ing upon whether the scattering is to the left or to the 
right. 

Using these results, the integration over wave number 
gives a gaussian function for the diffracted beam 
intensity, namely 

I(?,~0) =Io exp [-(7-grp)a/2~2-(oz/2a2]. (28) 

Expressions for the width parameters a and 8 are given 
in Appendix C. In order to keep the centroid of the 
diffracted beam aligned with the centerline of the 
detector we must move the detector by the angle go 
when the crystal is rotated through the angle ~o. We 
find that g is given by the expression 

g =  
1 1 

111 + 2S 2aC+3S S)] 
0~1 ) ( t~0 ~I 1) 1 1] l[M+2s 

+ 

angle ~o and the outgoing ray angle ~,. The nominal 
wave vector k0 will be chosen to coincide with one of 
the spectral components say Kez. In this case, this 
selection is not arbitrary since the orientation of the 
monochromator determines the nominal wavelength. 
Thus, the diffracted beam intensity due to Kez is 

I(y,~o)= I Jo (~o , Yo)Rm(dm)Rs(As)d(~o ) . (24) 

The spectral (dk/ko) and spatial (Yo) distribution of the 
source of X-rays is approximated by gaussian function 
as was done in §§ II and III. That is we take 

Jo(Ak/ko, Yo)= Jo exp [-(Ak)Z/2kZ~2- y~/2to~] . (25) 

1 - 2 S ]  z + _ l  [ 2 M + 3 S  S ]  2 
C~z r/s z L ~0 ~zz 

(S+M)  z . 
2 2 ris rim 

(29) 

r/m and r/s are the mosaic spread parameters of the 
monochromator  and sample respectively. ~0(= to0/R0), 
and cq(= Coo/R~) are the collimation parameters. 

The wide variation of this expression for the opti- 
mum scanning ratio g is shown in Fig. 8. These dia- 
grams are drawn for a particular selection of param- 
eters: 0m=30 °, c~0 =0"1 °, ~1=0.2 °, ~=0.0147 °. When 
the monochromator mosaic spread is small, the opti- 
mum scanning ratio exhibits a gentle maximum near 
the parallel position (esOs=-30°).  As the sample 
mosaic spread increases, the optimum scan approaches 
an to-scan. For a large mosaic monochromator,  g is 
consistently less than 1 and again approaches 0 as the 
sample mosaic spread is increased. 
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V. Conclusions 

The central theme of this paper is that the crystal and 
detector motions should be coupled in a manner 
which keeps the centroid of the diffracted beam aligned 
with the centerline of the detector. This obviously 
allows one to use the minimum possible detector 
aperture, thus keeping the background due to thermal 
diffuse and incoherent scattering as low as possible. 
Performing experiments in this manner should prove 
to be particularly important for high index reflections 
where the Bragg peaks are weak due to the small form 
factor and the large Debye-Waller factor (2 W), and 
the TDS background is large. 

Although some of the expressions we have derived 
for the optimum scanning ratio g may appear to be 
rather complicated, for a given experiment g is a single 
valued function of the Bragg angle 0s. Implementing 
the use of the optimum scanning ratio for tape con- 
trolled and computer controlled diffractometers is 
straightforward and adds essentially no complication 
to the accumulation of data. In certain cases the expres- 
sion fox g reduces to a very simple formula, for example 
equation (11). Whether or not the approximations 
which we have used need further refinement will 
await experimental confirmation. 

[2tan2OB(r--r 2) 2(r+r  2) 2 ] ~ / 4  
- -  ' /,is2 (x2A 1 ~ 2 ~ 2 A 1  ~ 2  A2. 

- 4  t a n  20n r  
N2 2 2 

azrh At 

+2[.tan2OB(r--r2)- ( r + r  2) 1 ] 
2 2 ~2(xI2A 1 0(2 rh oqAt 

x [ ~ - &  + 2tan2~ls2~zAOB(1--r)]/A2 t 2" 

N3= [ 1 4tan20B] 2 
17 2 ~ 2A t + 2 2 c(lr/s At  

[ 1 2tan2OB(1--r)]2/A 
- -  - - 5 - - - 2~  + 72.2 ~ -  2 • rlsAi Y/s O~tAz 

Where 

5 I 

g 2  

1 4 tan 2 On tan 2 0B 
.... + - - 2 . -  

(B4) 

(BS) 

(B6) 

(B7) 

APPENDIX A 
Expression for 6i and 61 for the case of a point sample 

The width of the rocking curve at associated with 
each spectral component is given by 

2 2 2 at =rh +tan  2 0B~t +~0 z • (A1) 

The angular width of the diffracted beam 6t is found 
to be 

Odls ~l + tan2 0B~O~ 62 = ~2r/2 + 4 tan z 2 2 2 2 

r/2 -t- tan z On~ 2 q_~2 
(a2) 

to 

.8 

t 
gas 

.4 

• SMALL MOSAIC MONOCHROMATOR (~M'O.0P) 

ANTIPARALLEL / O "1 ' PARALLEL =i= I 4 1 610 I'-o'o -'o -,'o -£ o_ 2o ~s Us-'--" 
(a) 

APPENDIX B 
Expression for 6, 6, g for the case of a finite sample 

For the range of scattering angles 208, and the param- 
eters r/s, at and a2 for which the spectral width cannot 
be ignored, the optimum scanning ratio is 

g =  - N 2 / 2 N t  , (B1) 

and the width parameters a and 6 are found from the 
expressions 

1 a2 - N3- N22/4Nt (B2) 

and 
di2= 1/Nt. (B3) 

Nt, N2 and N3 depend on the instrumental parameters 
and the Bragg angle 0B; 

LARGE MOSAIC MONOCHROMATOR 
(~M-OJ') 

150 C H O I C E  O F  S C A N S  I N  X - R A Y  D I F F R A C T I O N  

'ns"ol 

"ls'a 

ANTIP~LEL PARALLEL -l= , "l 

I'-~'o -~o ~o -do o o ~o ;o ~'o 8'o 
E S ~..--~ 

(b) 

Fig. 8. (a) Optimum scanning ratio g as a function of the sample 
Bragg angle 08 for a narrow mosaic monochromator.  The 
monochromator  Bragg angle Om was taken to be 30 °, and the 
collimation parameters a0 = 0"1 ° and as = 0"2 °. The gaussian 
approximated spectral width parameter ~ = 0.0147 °. (b) Same 
parameters as in (a), but for a large mosaic monochromator.  
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and 
(1 22 + r) ~/8 + a~ + ~2 tan 2 0B(1 - r) 2 

A2= 2 2 ~s ~1 "JI- 4 tan 20B~2~ 2 -~- tan 20B~2(~ 2 

1 + 

Where 

1 b z ( M + 2 S )  2 S 2 
A =  ~ + co--~ + r/2 + r/--~-" (C3) 

APPENDIX C 
Monochromated source, expressions for a and 8 

The width parameter J of the diffracted beam is given 
by 

/I  1 1 t 62=4A 4A \--~o + rl--~m + -~ 

2ab 2 ( M + 2 S )  2S 2 
cot • 

The rocking curve width parameter cr is found from the 
expression 

1 ( A - S  2) g2 
= - -3 (c2) 

and, 
a = R 1 - R o  , (C4) 

b = 2 ( M +  2S)R0-  2SR1. (c5) 
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Modi f i ed  E w a l d  Construct ion  for N e u t r o n s  Ref lected  by M o v i n g  Lat t i c e s  
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A simple reciprocal lattice construction is presented which, in the case of neutrons reflected by moving 
lattices, permits Ewald construction directly in the laboratory frame without transforming the neutron 
velocity from the laboratory frame to the moving-crystal frame and back. Some special features and 
cases of the reflexion process - as seen in the laboratory frame - are discussed. 

In recent years, an increased interest in neutron scat- 
tering by moving lattices has been shown (Lowde, 
1957; Brockhouse, 1961; Shull & Gingrich, 1964; 
Meister, 1967; Shull, Morash & Rogers, 1968; Buras, 
Giebultowicz, Minor & Rajca, 1970). The experiments 
performed so far have shown easily measured changes 
in the reflexion process due to some kind of Doppler 
effect. It also seems plausible that the neutron diffrac- 
tion effects observed in vibrating piezoelectric crystals 
by Galociova, Tichy, Zelenka, Michalec & Cbalupa 
(1970) are strongly influenced by the Doppler effect 
(Buras, Giebultowicz, Minor & Rajca, to be pub- 
lished). 

As proposed by Lowde (1957), and followed by 
Brockhouse (1961), Shull & Gingrich (1964), and 

Shull et al. (1968), the process of neutron diffraction by 
moving lattices is usually depicted in the reciprocal 
lattice space (Fig. 1) and consists of three steps: (1) the 
incident neutron velocity, v~, is transformed from the 
laboratory space to the moving-crystal space where it 
is equal to u~, (2) the reflected neutron velocity, ur, in 
the moving-crystal frame is found by means of Ewald 
construction, and (3) the reflected neutron velocity, u ,  
is transformed from the crystal moving frame to the 
laboratory frame, and the reflected neutron velocity, 

v ,=DE,  in the laboratory frame is finally obtained. 
This paper presents a simple procedure which directly 
permits reciprocal-lattice construction in the labor- 
atory frame without laborious transformation from 


